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ABSTRACT

Silicon carbide whiskers, a strong material that resem-
bles cat’s whiskers, are produced, primarily, for
strengthening ceramics and metals. The current method
for producing these whiskers is to use a semibaich
process, extremely difficult to model mathematically.
An alternative model utilizes the expertise of operaiors
accurnulated from years of experience in initializing
and running the process. We designed two expert sys-
tems in which the process can be set up and run by
nonexperts. One system uses crisp logic and the other
fuzzy logic. In this article, we compare the two systems.
© 1993 John Wiley and Sons, Inc.

INTROPUCTION

Silicon carbide {SiC) whiskers, a strong material
that resembles cat’s whiskers, are produced pri-
marily as reinforcing material for strengthening
ceramics and metals. Whiskers can be used as
randomly oriented chopped fibers or, in long
lengths, can be made into yarns and woven,
creating an even more effective directional re-
inforcement. Although the primary purpose of
the whiskers is for compositing materials to add
strength, we are also considering other uses.
The Los Alamos vapor-liquid—solid (VLS)
whisker production process is a semibatch pro-
cess that combines an almost steady-state flow
process with an’ unsteady-state; batch, silicon-
monoxide-generation process. This combined
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process is extremely difficult to model mathe-
matically. The process is nonlinear and time
varying, making it difficult to apply methods
from classical or modern control theory. Proper
whisker growth can occur only with the proper
process conditions and, therefore, depends upon
good process control. Yet, despite apparent con-
trol problems, bigh-quality whiskers can be pro-
duced when the process is set up and run using
rules accumulated from many years of trial and
errTor.

At least two catalyst types, several reactor
configurations, and several sets of process con-
ditions are available in the setup mode. Picking
the best set of conditions requires experience
and knowledge of the process.

In the past, a few experts. set up the whisker
production runs and operated them according to
rules they had memorized or written in
notebooks. When the whiskers process became a
candidate for technology transfer, we had to
solve the problem of how to tramsfer the exper-
tise to industry without transferring the expert.
To solve this problem, we designed an expert
system capable of assisting users with the process
setup and the control problems, thus creating a
vehicle for technology transfer.

We built an expert consultant capable of pro-
viding users with enough information to set up a
run that would produce the desired whisker type.
The setup information was then incorporated
into a rule base designed to drive the control
system. The control system was designed to cor-
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. Tect perturbations during the process run to en-
sure that users obtain the desired product.

Over the years, the laboratory-scale whiskers
production system has evolved and improved.
The automatic control portion of the system
represents a ‘‘brute-force” approach that re-
guires an operator interface. The expert system
portion of the system requires a human sensor,
the operator, who checks for perturbations or
upsets. After observing the controlled variable
readings, the operator must ask the expert sys-
tem whether the process is behaving correctly.
The expert system responds by suggesting which,
if any, corrections should be made, and the
operator then makes corrections if required. Au-
tomatic controls and sensors can later be added
to the process to automate the expert system
operation.

Most of the rules for the expert system were
obtained by interviewing the operators, and
some were extracted from the data in a relational
data base. The data base enabled us to observe
and plot data in a wide variety of patterns. From
these patterns, we found the optimum correla-
tions, using classification methods from pattern
recognition theory. These correlations yielded
some excellent rules.

This rule-based expert system was designed to
run on a PC, which can be located in the labora-
tory assoctated with the whisker process equip-
ment for easy access by the operator.

DESCRIPTION OF THE WHISKER
GrOWTH PROCESS

The VLS laboratory-scale SiC whisker product-
ion process at Los Alamos is a semibatch pro-
cess, that is, the silicon-monoxide-generation
step is run in the transient or batch mode and
other steps in the process are run in the steady-
state continuous-flow mode.

Figure 1 shows one configuration of the SiC
whisker reactor. In this configuration, silicon
dioxide (8i0,) bricks impregaated with graphite
are placed inside the reactor. After being
heated, the bricks produce silicon monoxide
(8i0) (the ingredient used to make SiC) by the
following reaction:

Si0, + C— 810+ CO (1

The production rate for SiQ is proportional to
the concentration of Si0O, and carbon (C) in the
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Figare 1. Los Alamos silicon carbide whisker pro-
duction reactor.

brick. This 5iO generation step, where concen-
trations diminish with time, constitutes the tran-
sient or batch portion of the process. As shown
in Figure 1, a mixture of gases containing
methane (CH,), the carbon source for the SiC
production, is forced through the reactor. The
composition and flow rate of this gas mixture
never varies throughout the length of a pro-
duction run and, thus, -constitutes the steady-
state portion of the process. The SiC is formed
by the reaction shown in eq. (2):

Si0 + CH, - SiC + H,0 + H, 2)

The SiO formed by eq. (1) must mix with CH,,
in the process gas stream to form SiC. These
gases must find their way to a whisker growth
surface, as shown in Figure 1. Figure 2 shows the
modes of mass transport from the SiQ generator
to the whisker growth surface. Figure 3 shows
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Figure 2. Gas-phase mass transport modes.
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Figure 3. Steps in the overall kinetic process for
growing silicon carbide whiskers.

the steps believed to be involved in the overall
Kinetic process for growing the whiskers. The
whiskers grow away from the catalyst-coated
substrate, with a ball of liquid catalyst attached
to the growing end. This liguid catalyst ball is the
main difference between the VLS process and
the conventional vapor-solid whisker process. In
the VLS process, the vapor is the gas that con-
tains the compounds shown in eq. (2), the liquid
is the catalyst, and the solid is the SiC whisker.
As the process continues, the whiskers grow
further and further into the gas stream, affecting
the boundary layer around them and, hence, the
mass transfer rate. This is one of many reasons
that the process is both time varying and non-
linear.

The previous discussion illustrates the difficul-
ties of modeling with normal mathematical-algo-
rithmic techniques. We found tirat our mathe-
matical models could not adequately predict
whisker vyield and type from a particular ex-
perimental setup.

Equation 3 is an example of a model derived
from fundamental principles, that is, from mass
and momentum balances about the reactor:

6= ¢km(co - C:)A - uCaAc (3)

where 4 is the average SiC growth rate (kg/s); &
is a numerical conmstant; k, is the integrated
mean mass-transfer coefficient (m/s); ¢, is the
concentration of SiO at the generator wall (kg/
m’); ¢, is the concentration of SiO at the concen-
tration boundary layer outer surface (kg/ m’); A
is the surface area of the $iO generators (m®); u
is the average reactant gas flow (m/s) parallel

to the catalyst and SiO generator surfaces; ¢, is
the average bulk concentration of SiO (kg/ m®)
in the boundary layer; and A, is the average
cross-sectional area (m”) of the reactor normal to
the gas flow, minus the coneeniration boundary
layer thickness.

Although the reactor configuration used to
derive eq. (3) is similar in concept to the reactor
shown in Figure 1, its geometry is a little differ-
ent and it was easier to model. The concen-
tration boundary layer is similar in concept to
the momentum boundary layer discussed earlier,
but it is a different boundary layer. The momen-
tum boundary layer in Figure 2 is shown on the
right-hand side, near the catalyst wall, where it
covers the whiskers. The concentration boundary
layer shown on the left-hand side of this figure
represents the heavy concentration of Si© nedr
the generator. This layer varies in thickness de-
pending on the reactor height and the time. The
integrated mean mass-transfer coefficient comes
from a complicated equation that relies heavily
upon knowing the thickness of the concentration
boundary layer. The SiO concentration terms
(especially ¢, and ¢,) are unknown so they must
be estimated. Using data from previous runs, we
were able to estimate these parameters and,
sometimes, make reasonable predictions using
eq. (3). '

Later in the development of the process, when
we increased the gas velocity to get better mix-
ing, this model was no longer valid. It predicted
decreased yields when increased yields were
actually obtained. We believe the predictions
were incorrect because the increased flow rate
changed the mass-transfer rate-controlling step
and, thus, invalidated the assumptions used for
deriving this model. Although assumptions were
chosen carefully when building this model from
basic principles, changes in the operating con-
ditions resulted in significant deviations from the
model.

Because this process was producing good whis-
kers, we wondered “How can we grow whiskers
this well, without an adequate understanding of
the physics of the process?” We concluded that
the answer is that the expert operators have
learned excellent rules of thumb, through years
of trial and error, for setting up and running
whisker growth experiments. Our next question
was “How can we capture this expertise so that
the process can be set up and run by people who
are not experts?”’ This question was especially
important because the technology was earmar-
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ked for transfer to industry and we wanted to be
able to transfer the technology without transfer-
ring our experts. Our solution was to develop an
expert system that models the experts rather
than one that models the process.

KNOoWLEDGE ACQUISITION

Most of the rules used in our expert systems
were obtained directly from the experts who
design the whisker growth experiments and run
the process. The rest of the rules were obtained
from experimental data. Data from our gas
chromatograph were read directly into the com-
puter. These, and other, experimental data were
used in a computer program to generate addi-
tional information that is stored in a data base.
A relational data base management system is
used to query the data base and produce tables
that contain many different combinations of the
stored information. The data in these tables are
then plotted and analyzed in an effort to develop
new rules. A relational data base management
system was an’excellent tool for this job because
it was easy to observe patterns, or telationships
between almost any combination of vamables
desired. If a pattern looked interesting, more
powerful techniques could be used to produce
more quantitative information (rules). In this
study, we used our data base management sys-
tem to observe two different types of patterns:
trends and clusters.

When the observed data patterns indicated
that there was a single trend or a relationship
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Figure 4. Least-squares method used to develop a
rule to determine number of times a growth plate
should be used.
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Figure 5. Perceptron method used to find a decision
boundary to develop a rule that relates gas carbon
content to mean whisker diameter.

between two or more variables, the method of
least squares was used to fit the data to produce
new rules. Figure 4 shows an example of the
least-squares method used for developing a rule
about whisker yield as a function of the number
of uses of the growth plate.

In other cases, where the observed data
seemed to fall into separate groups or clusters,
pattern-recognition techniques were used to find
decision boundaries between the data clusters.
These boundaries were used to produce rules.
Figure 5 shows the use of the perceptron algo-
rithm, described by Tou and Gonzalez (1974),
for finding a decision boundary. From this exam-
ple, we obtained a rule from our data for de-
termining the inlet gas carbon content (methane)
required to produce whiskers in two given diam-
eter ranges for a given gas SiO content, catalyst
type, and catalyst particle size.

EXPERT SYSTEMS

The goal for this project was to develop a small
PC-based expert system in two phases, as shown
in Figure 6. In_phase 1, we developed an expert
whisker growth consultant to help operators set
up a run that will enable them to attain the
desired whisker type and quantity. The knowl-
edge obtained from the expert comsultant is en-
tered into a knowledge base used by the expert
control system, developed as phase 2 of the
project. (Figure 7 shows how the control system
operates.) The expert consultant can be used
alone or with the expert control system. The
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Figure 6. Two phases of the expert system design.

expert control system requires an operator to
observe conditions and set the controflers. Based
on input from the expert consultant, the
operator sets control points for temperatures and
gas compositions for each of the several time
segments of the production run.

The process setup parameters obtained from
the expert consuitant would satisfy the control
problem for an ideal system. But, because whis-
ker production is a complicated semibatch pro-
cess this initial' setup will not always satisfy the

problem. As shown in eq. (1), the success of the -

whisker growing process depends greatly on the
ability of the system to produce SiO. SiO pro-
duction is the in situ step and it is neither directly
controllable nor observable. The SiO comes
from measured and cut pieces of silicon dioxide
bricks impregnated with carbon.

Although one goal is to strive for consistency
in composition from run to run, this goal is not
always achievable. As changes occur in the pro-
duction rate of SiO, changes are also required in
the operating conditions. The production rate
can be controlled to some degree, by controlling

Operator

Figure 7. Demonstration of the operator interface
with the expert system and control system.

the reactor temperature and the carbon monox-
ide (CO) input, but the important controlling
factor is the carbon concentration in the genera-
tor. The carbon concentration is high at the
beginning of the run and essentially zero at the
end of the run, so the ability to control the Si0
production varies throughout the run. The pro-
duction rate of the SiC is determined by observ-
ing the CO, hydrogen (H,), and methane con-
centrations in the exit gas. The expert control
system is, therefore, set up to help the operator
determine the new setting as depicted in Figure
7. We believe that with today’s microprocessor
technology the entire process could be auto-
mated and the operator could be eliminated
from the loop after the initial setup, but this has
not yet been done,

EXPERT SYSTEM SHELLS

An important part of this project was to find an
expert system shell that would run on an inex-
pensive computer that could be used in a harsh
and dirty environment. We found that the fol-
lowing three rule-based shells could be used with
the PC family of computers and could easily
handle the task:

o CLIPS (Giarratano, 1987),

« EXSHELL (Luger and Stubblefield, 1989},
and

» Togai’s Fuzzy-C Development System (Hill,
Horstkotte, and Tiechrow, 1989).

All of these shells performed well. They can be
run on a PC using the DOS operating system
with no modifications, which means that the
maximum hardware requirements are 640KkB
RAM. '

CLIPS, developed by NASA, is a forward-
chaining, rule-based shell written in the C pro-
gramming language. A knowledge of both C and
LISP programming languages would be helpful,
although not essential, for the programmer using
the CLIPS shell.

EXSHELL, developed by the University of
New Mexico Computer Science Department, is a
backward-chaining, rule-based shell written in
the PROLOG programming language. An un-
derstanding of PROLOG is essential for those
who wish to use EXSHELL.

The Togai Fuzzy-C Development System, de-
veloped by Togai Infralogic, Inc., is written in
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. C. It supplies the user with a framework in which
to easily develop the membership functions and
fuzzy rules to be used with the fuzzy logic ap-
proach to expert system. design. However, users
must write their own C program with which to
drive the fuzzy expert system. Therefore, it is
essential for those who wish to use this shell to
have a good knowledge of the C programming
language.

All of these shells are different, and all have
strengths and weaknesses. For this project, we
used the CLIPS shell and the Fuzzy-C Develop-

ment System except at the beginning of the
project, when we used EXSHELL extensively.
Because EXSHELL is written in the PROLOG
language, it is easy to add powerful support tools
to the expert system, for example, explanation
facilities that help users understand how and why
the expert system has arrived at a given conclu-
sion. An explanation facility is a nice feature,
especially for the expert consultant. EXSHELL
is limited because it was written as a university
teaching tool and is not as well developed as the
commercial shells. Although EXSHELL works
well with symbols, it does not work well with
numbers. Much of the expertise in the expert
consultant can be expressed in a symbolic or
discrete form, such as the Jogic for choosing the
correct temperature profile from a set of tem-
perature profiles. Giving symbolic advice such as
“Use temperature-time profile A” is easy for
EXSHELL expert systems. On the other hand,
almost all of the expertise in the expert control
system must be expressed in numeric form. EX-
SHELL programs have difficulty giving advice
such-as *“Set the inlet CO composition to 9.1%.”

To do this properly, the EXSHELL expert sys-
tem would require a separate rule for each pos-
sible CO composition. This was the primary
reason for abandoning EXSHELL for the re-
mainder of this project.

In our first attempt to write an expert control
system (Parkinson et al., 1989), our approach
essentially ignored the existing automatic control
system, resulting in an expert system that gave
general advice to the operator about almost any-
thing that could go wrong. In our current expert
control system, however, we tried to take full
advantage of the automatic contro} system, en-
abling it to provide better information on how to
upgrade its performance. Because EXSHELL
has trouble giving this more precise information,
we chose not to use it for the control part of this
project.
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ExPERT CONSULTANT DEVELOPMENT
(PHAasE 1)

Figure 8, taken from Shalek et al. (1988), is an
empirical-phase diagram of the whisker types
that can be produced as a function of gas compo-
sition. The abscissa represents a change from
silicon-rich to carbon-rich gas mixtures. The
ordinate represents the SiO concentration in the
gas phase. The properties of the whiskers from
categories (1) through (7) (shown at the top of
the chart) depend primarily upon the diameter of
the whisker. Some commercial interest has been
shown in all sections of the chart except areas E
and F, which represent the combined species and
the large bent needles.

For this study, the whisker types were lumped
into groups slightly different than those shown in
Figure 8. These groups are based on whisker
lengths and diameters. The lengths, which vary
from about 0.00318m (0.125in.) to about
0.0889m (3.5in), are divided into three
categories: short, medium length, and long. The
diameters, which vary from 1.0 X 1077 to 1.5%
107 m (0.1-15 um), are divided into three
groups: small, -medium, and large. With short
whiskers, we are interested only in small diame-
ters; with long and medium-iength whiskers, we
are interested omly in medium and large
diameters.

In addition to developing rules to produce a
particular whisker type, we have also developed
some rules to help maximize the production of
those whiskers under various operating con-
straints. These rules can be divided into three
categories: (1) how to obtain the maximum yicld
with new growth plates; (2) how to obtain the
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Figure 8. Empirical phase diagram for the growth of
silicon carbide whiskers. Source: Shalek et al. (1988).



maximum yield with used growth plate; and (3)
how to obtain a maximum vyield in a limited run
time. Combinations of these categories can also
be used. The rules that are used depend on the
type of whisker we are trying to produce, al-
though all are included in the whisker growth
consuitant expert system.

For the laboratory-scale operation, the pri-
mary concern is with categories 1 and 2. The new
growth plates require different gas compositions
than do the used growth plates to produce the
same quantity of whiskers. After one run, the
new growth plates are coated with SiC, and from
then on the SiC participates in the process

chemistry. After about four runs, the whisker

production has degraded enough that the plates
must be replaced.

From our cost analyses, we found the whisker
growth process to be both labor and material
intensive. Replacing growth plates after every
run is too expensive, even for a laboratory-scale
process. Figure 9 shows the general shape of the
whisker yield—time curve based on our observa-

Whisker Yield (g)

0 L 1 L 1 H
0 2 4 § L]

Time (h)

Figure 9. Yicld—time curve for the silicon carbide
whisker growth process.

tions of whisker experiments over several years.
Because this was a laboratory operation, our
approach was to run the reactor as long as
possible to produce the maximum yield. The
point of diminishing returns is reached long be-
fore the reactor is shut down. In a commercial

Long
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Small -7~ Medium Large .7~ Medium Large
Diameter Diameter Diameter Diameter Diameter
New New New New New
Growth Growth Growth Growth Growth
’_\Plate Plate Plate Plate Plate
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Growth Growth Growth Growth Growth
Plate Plate Plate Plate Plate
Reduced Reduced Reduced
Processing Processing Processing
Time Titre Time
Normal Normal Normal
Processing Processing Processing
Tima Time Time
Normal Normal Normal
Processing Processing Processing
Time Time Time
Reduced Reduced Reduced
Processing Processing Processing
Time Time Tima

Figure 10. Search tree for the whisker growth consultant.

SiLICON CARBIDE WHISKER PRODUCTION 205,



. Teactor, it may not be economically feasible to
run longer than 6h, the point of diminishing
yield shown in Figure 9. This process is a candi-
date for technology transfer, so production rules
have been developed for maximizing yields with
shorter run times because we assumed that an
industrial process, even a batch process similar
to this one, would be optimized in a different
manner. For example, if several batches were
run to the point of diminishing returns in 1 day
more whiskers would be produced than in the
previous maximum production run, yet in the
same amount of time.

Figure 10 is a simplified search tree for our
whisker growth consultant. The leaves of the
tree represent operating conditions that produce
the types of whiskers desired. For example, the
whisker product can be changed from medium
fength to long by changing the reactor and cata-
lyst type. Producing short whiskers requires a gas
composition change, while whisker diameter de-
pends primarily on the catalyst type and particle
size used.

Although choosing the proper production
rules for a given run seems straightforward, the
rules obtained from the data base show this

Desired
‘Whisker Length

¥

Choose

l Reactor Type ¥
Desired

Desired Whisker
Relative Whisker 1—’ Dizmeter?

Quality?
- | N Catalyst " l

Choice
Catalyst > Age of
Particle Size Growth Plate
T ] l
Use a Newer
- v Growth Plate
Choasa
Pro‘.}e_ss e Temperature-Time
Run Time Protite \ Choose
Initial Gas
Composition
Choose
Concentraticn-Time
Profile
TO EXPERT
Print Results _—_> CONTROL
PROGRAM

Figure 11. Search space diagram for the expert con-
sultant. :
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procedure to be more complicated to set up and
run optimally than it appears at first observation.
For example, gas compositions and temperatures
should be different depending upon the catalyst
and the particle size used. The rules for maximiz-
ing the whisker yield in a shorter period of time
depend upon the intended whisker diameter and
length. Long whiskers are not typically produced
in shorter runs.

Figure 11 is the search space diagram for our
expert consultant. The rectangular blocks repre-
sent the major decision points in the program.
Figure 12 shows the CLIPS version of a dialog
with the whisker growth consultant, fellowing
the search space shown in Figure 11. (Some of
the values given in Figure 12 are fictitious be-
cause the whisker process falls under the purview
of U.S. Export Control Laws and some informa-
tion 45 subject to limited access.) The questions
in Figure 12 are asked by the expert system and
the input values (or answers) are supplied by the
user. Note that, at each decision point, the user
is given the opportunity to use values other than
those recommended because, at the end of the
consulting session, the correct values must be
available for use by the control system.

The final version of our expert consultant was
written with the CLIPS shell and required 46
rules. Earlier versions of the expert consultant
were attempted with both the Fuzzy-C Develop-
ment system and EXSHEIL. A comparison of
all of these systems is made in another section.

What is the desirad average whisker length?
{ia Inches ©. 16 3.5)
3.0

We recommend reactor 1ype B, which will you use?
(A or B)
B

What Is the desired average whicker diameter?
{in microns 0 to 12}
19

We reacommend the manganese basad catalyst, which one will you chogse?
{manganase or Iren}
Rianganase

We recommend sieve size 20-25, what will you use?
(25-32, 20-25, or 15-20)
20-25

How many times have you used the reactor growth piate?
(0 or greater)
0

War < P time profile A, which will you-uas?
(8, B, ©, or D)
A

We recomrend that you use the follewing initial gas composition:
Ha = 80.0%

CO=5.5%

N2 = 14%

CHy= 0.5%

Would you use this? (yes or no)
¥as

We recommend that you vary the CO concentration according to
concentration-time profite A.

‘What profile will you use?

(A, B, CorD)

A

Figure 12. Dialog with the expert consultant (CLIPS
version).



ExXPERT CONTROL SYSTEM
DeveLoPMENT (PHASE 2)

The expert control system requires that the
operator and expert consultant provide informa-
tion from its knowledge base. Because system
sensors do not communicate directly with the
expert control system, the operator must observe
the sensors, communicate with the control pro-
gram, and, if necessary, manually adjust the
system. controls. The. current system has ounly
seven sensed variables and five possible control
adjustment actions. The sensed variables are the
temperature and the inlet and outlet composi-
tions of three of the four process gases (hydro-
gen, carbon monoxide, and methane). The five
control actions are the temperature adjustment,
the rate of temperature change, and the flow of
the three individual inlet gases (hydrogen, car-
bon monoxide, and methane). The amount of
adjustment needed depends on the current read-
ing and the rum setup conditions supplied by the
expert whisker growth consultant. Figure 13
shows the—search tree for the expert controt
system. Figure 14 is a search space diagram for
the expert control system. The current expert
control system contains 81 production rules. A
crisp version of the control system was de-
veloped using the CLIPS shell. It contains only
75 rules because the CLIPS shell makes it easy to
combine rules in an IF-THEN-ELSE format. A
fuzzy version of the control system was de-
veloped using the Fuzzy-C Development System.
It contains all 81 rules.

Figure 15 shows the Fuzzy-C Development
System version of dialog with the expert control
system. Note that there is mot much dialog witir
this control system. The input values are loaded
~on the command line, and the control system

program immediately delivers all of the output
values, in a manner similar to the way a micro-

I Hy ! j co CHy
Compasition} {Composition Ceompasition
(Cut} Out] O]
Adjust Adjust Adjust
gz Intet CC Inlet CHy Inlet
OMmPo- Compo- Compo-
sition sltion sition
j No Action l
Adjust
Tempersiues
and Time Step

Figure 13. Search tree for the expert control system.

From Expert
START Consultant

CO Cencen- __{ Time | Adjust
tration? into Run? Temp ire
{inlet & outlet) and Time Step
} L]
Match T——
Hy Concen- [ femperature | | gg’gonw,_
tration? with “tration
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Adjust Inlat
CHy Concen- } CH,4 Concen-
tration?® tration
(intet & outiet) co ek
tration with Adjust Inlet
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{Temperature?] | | Time Profile tration
{ T T Return to

Start

Figure 14. Search space diagram for the expert con-
trol system.

Temperature in 1200
Time is 120
COinis3

CO Qutis12

H2 Inis 55

H2 Qutis 57
CHalnls 0.4

CH4 Out is 0.3

New CO In is 11

New Temperature is 1362

New Time Step is 37

New H2 In is 60

New CH4 In is 0.5
Figure 15, “Dialog? with the.expert control system. |

(Fuzzy-C version).

processor would handle this information for au-
tomatic control. The CLIPS expert control sys-
tem dialog is similar to the CLIPs expert con-
sultant dialog. There is interaction with the
operator.

The current version of the expert control sys-
tem is primarily concerned with variables that
make a significant difference to the process, as
opposed to early attempts to control every pro-
cess parameter (Parkinson et al., 1989). Origi-
nally, rules were derived for nitrogen flow and
reactor pressure. But, these parameters have
only a relatively small effect on the VLS whisker
growth process, and it is difficult to find mean-
ingful rules for such parameters. We examined
egs. (1) and (2) to focus on important variables,
giving particular attention to eq. (1), which gov-
erns the production of Si0. SiO is a necessary
ingredient for producing SiC whiskers. SiO con-
centration is the most difficult of the process
parameters to control and a significant amount of
intelligence is required for its control. It is also
the most difficult to observe.

Figure 16 is a generalized curve showing the
concentration of SiO in the reactor as a function
of time. The solid curve represents the uncon-
trolled case. The shape of this curve is related to
the SiO production rate being a strong function
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Figure 16. Concentration-time profile for silicon
monoxide,

of carbon concentration in the SiO generator
brick. The carbon is depleted with time, and,
eventuaily, SiO is no longer produced. Here, the
broken line is the desired case. A constant sup-
ply of SiO throughout the run is desirable. The
broken line with dots, represents what we be-
lieve to be as close to the desired case as can be
achieved with control. The curves representing
the controlled and uncontrolled cases can both
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Figure 17. (a). Membership functions for Temp
(reactor temperature) (—-——=example value). (b).

Membership functions for Time (time into run) (---
— =example value). (¢). Membership functions for
CO_OUT (exit CO concentration) (-~—~ = example
value).
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be generated from a simple differential equation
describing the kinetics of eq. (1). The validity of
the differential equation model has been venfied
many times by measuring the exit CO concen-
tration from the reactor. Equation (1) shows that
the exit CO concentration is related to the SiO
production.

The amount of SiO produced by eq. (1) can be
controlled by changing the reactor temperature
and the CQ inlet concentration. Early in the run,
production can be reduced by decreasing the
temperature and increasing the CO inlet concen-
tration. This process, however, can be compli-
cated because, in some cases, it is desirable to
increase the temperature at the beginning of the
run to initiate the reaction. Late in the rum,
production can be increased by increasing the
temperature and reducing the CO inlet concen-
tration. An expert system rule concerning eq. (1)
should include the following: accumulated time
since the run began; temperature; exit or outlet
CO concentration as antecedents; new tempera-
ture; time step to reach that temperature; and
new inlet CO concentration as consequents [i.e.,
IF (antecedents) THEN (consequents)].

1.0 T
Low Med High
0.5~ {medium)
i3 I
1000 1100 - 1200 1300 1400
{(NTemp)} New Temperature (°C)
(a)
1.0
b -
Low Med High
A5 {medium}) -
Iy ) t
¢] 5 10 15
{NCO_IN) New CO Inlet Concentration (%)
(b)
1.0
Small Med Large
05| {medium}) -

1
0 20 40 60 a0 160 120
Time - Step (min)

©
Figure 18. (a). Membership functions NTEMP (new
reactor temperature). (b). Membership functions
NCO_IN (rew CO inlet concentration). (c). Member-
ship functions for Time_Step (time aliowed to reach
the new temperature).




‘Equation (2) represents the rate of SiC pro-
duction. This rate can be monitored indirectly by
observing the amount of hydrogen and methane
in the gas stream. Rules affecting this equation
examine the amounts of hydrogen and methane
in and out of the reactor, run time, and CO
concentration.

To demonstrate how the fuzzy expert system
works, we track the firing of the fuzzy rules that
led to the settings for “New CO In,” ‘“New
Temperature,” and “New Time Step,” shown in
the sample output in Figure 15.

Figure 17 represents the fuzzy membership
functions for the antecedents for the fuzzy rules
used in this example. Figure 18 represents the
membership functions for the consequents of the
fuzzy rules used in the example. Again, some of
the values given in Figures 17 and 18 are fictiti-
ous because some of the whisker information is
limited-access information. The dotted lines in
Figure 17 represent example input values
(Temperature = 1200°C, Time =120min, and
CO_OUT=12%).

These triangular and trapezoidal membership
functions make the difference between our fuzzy
and crisp expert systems. The fuzzy parameters
can have a membership value between zero and
one in more than one fuzzy set. It is not neces-
sary for the sum of the membership values for
one parameter to add to one. (The crisp parame-
ters can have a membership value of one in only
one crisp set and must, therefore, have a mem-
bership value of zero in all other sets.) Because
of this multiple membership, the input values for
the example problem (the fuzzy expert system)

“will cause .the following four (instead of one)
rules to be fired:

As shown in Figure 17, the parameter value of
120 min for Time has a membership value in the
fuzzy set Early of 1 [i.e., Time(Early) =1]. The
parameter value of 1200°C for Temp has a mem-
bership value of 0.35 in the set Med and 0.65 in
the set Low [i.e., Temp(Med)=0.35 and
Temp(Low) =0.65]. The parameter value of
12% for CO_OUT has a membership value of
(.15 in the set Med and 0.75 in the set High (i.e.,
CO_OUT(Med)=0.15 and CO_OUT(High)=
0.75].

Our fuzzy expert system shell uses the Max—
Min inference method described in the following
example to resolve rules 1-4. The minimum
membership function value for all of the antece-
dents in one rule that are connected by AND Is
the value used to resolve that rule. For separate
rules that refer to the same consequent, or an-
tecedents that are connected by OR in the same
rule, the maximum membership function value is
used to resolve the rule or choose between the
rules. Consequent membership functions are
clipped at thevalve of the membership function
used to resolve the rule and combined where
appropriate. The centroid of the clipped (and
combined) membership function is the value
used as a crisp result from the rule(s). This
procedure is demonstrated in Figures 19 and 20.

Figure 19 shows portions of the appropriate
antecedent membership functions on the left and
portions of the appropriate consequent member-
ship functions on the right. In Figure 19a, repre-
senting rule 1, the minimum membesrship func-
tion value for antecedent Temp(Med} =0.35 is
used to resolve the rule. All of the appropriate
consequent membership functions are clipped at
the height of 0.35. Similarly, Figures 19b —-19d

Rule 1

IF Time is Early AND Temp is Med AND CO_OUT is High THEN
NTEMP = High, Time_Step = Med, NCO_In = High

OR
Rule 2

IF TIME is Early AND Temp is Med AND CO_OUT is Med THEN
NTemp = High, Time_Step = Med, NCO_In = High

OR
Rule 3

IF Time is Early AND Temp is Low AND CO_OUT is High THEN
NTemp = High, Time_Step = Small, NCO_In = High

OR
Rule 4

IF TIME is Early AND Temp is Low AND CO_OUT is Med THEN
NTemp = High, Time_Step = Small, NCO_In = High.
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Figuare 19. (a). Rule 1—minimum membership value of “ANDed” antecedents is 0.35. (b}. Rule 2—minimum
membership value of “ANDed” antecedents is 0.15. (c). Rule 3—minimum membership value of “ANDed”
antecedents is 0.65. (d). Rule 4—minimum membership vatue of “ANDed” antecedents is 0.15.

represent the firimg of rules 2—4. Rude 3, with-a
minimum membership function value of 0.65,
supplies the maximum consequent membership
functions for NTemp(High), Time_Step(Small),
and NCO_In(High). NTemp and NCO_In stand
for New Temperature and NewCO In, respec-
tively. Rule 1, with a minimum membership
function value of 0.35, supplies the maximum
consequent membership function for Time_
Step(Med). Clipped membership functions
Time_Step(Med) and Time_Step(Small) are
combined, and the centroids are calculated for
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the new temperature (NTemp), the new time
step (Time_Step), and the new inlet CO concen-
tration (NCO_In). This procedure is illustrated
in Figure 20. These new values are then
Temperature = 1326°C, CO in=11%, and time
step = 37 min. These values are shown in the
sample problem in Figure 15.

In contrast, in the crisp expert control system
(which has essentially the same number of rules
as the fuzzy control system) only one rule is fired
to resolve the same example problem. The crisp
rule is as follows:



IF-{(0 < =Time < 250) AND (1000 < =Temp < 1225) AND (10.5<=CO_OUT <20)
THEN (NTemp = 1363, Time_Step = 19, NCO_In =12)) .

Eu i

Cenlrold = 1362°C

Centreid = 23.3 min

(@

Centroid = 11%

From Byle 1

Time-Step
1.00

Med
.38 -

15 100 min
Cenlrold = 58 min

(b)

Time-Slep

Q 100 min
Cenlroid = 37 min

©

Figure 20. {a). Maximum “clipped” membership
functions chosen from rule 3. The crisp consequent
values are the centroids. (b). Maximum ‘“‘clipped”
membership function for Time_Step (med) from rule
1. The crisp consequent value is the centroid. ().
Combined “clipped” membership functions for
Time_Step. The crisp consequent value for Time_Step
is the centroid.

The only significant difference in the answers in
this example vs. those of the previous example is
the time step. The fuzzy solution, Time_Step =
37, has a membership value of approximately 0.5
in both the Time_Step(Small) and Time_Step-
(Med) membership functions (see Fig. 18¢c). So,
this value really represents a weighted average of
each of the membership functions.

Figure 21 shows the crisp membership function
boundaries for Time_Step, Small, Med, and
Large. The fuzzy membership function bound-
aries are superimposed on this figure. Here,
membership can be in only one set,. and the
membership values are either zero or one. The
parameter value takes on the centroid of the set

Time-Step
Crisp Membership Function Boundaries
- — == Fuzzy Membership Function Boundaries
1.0 ==y LA S T ===
. N ~ 4
~ . ~ Ve
~ P ~ Ve
Small > o Med N e Large
~ # ~y
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< i “~ 4 ~
’ s ~
° t i N N 1 s I 4 L
o 10 20 30 ;40 5C ?O 70 80 90 100 M0 120
I ! Minutes
P
Crisp } Crisp Crisp
Centroid 58 Centreid 99

Centroid 18 ¢

Fuzzy Value = 37 from example

Figure 21. Demonstration of contrast between crisp
and fuzzy membership functions for Time_Step.

in which the consequent has membership.
Hence, Time_Step(Small) =19 and Time_Step
(Med) =0 for the crisp rule.

ComPARISON OF THE EXPERT SYSTEMS

Phase 1, the expert consultant, was written with
three different expert system shells, EXSHELL,
CLIPS, and The Fuzzy-C Development System.
The PROLOG-language-based EXSHELL does
a credible job with the expert consuttant-because
it deals largely with crisp, symbolic information.
But, although EXSHELL can easily decide be-
tween an iron or a manganese catalyst it has
difficult recommending a H, gas concentration of
80%. An important feature of EXSHELL, how-
ever, is its -built-in .explanation facility, which
easily answers HOW and WHY questions about
its decisions, an important feature for an expert
consultant. Many existing problems with EX-
SHELL could be remedied by the further de-
velopment of this university learning tool.

The CLIPS expert system shell is well de-
veloped. It uses a forward-chaining search
strategy, as opposed to the backward-chaining
strategy used by EXSHELL. It is, therefore,
much more difficult to implement an explapation
facility with CLIPS. Because most of the deci-
sions made by the expert consultant are crisp
(i.e., it makes decisions, such-as which reactor to
use, A or B? etc.), CLIPS is a good shell to use
for the expert consultant construction.
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. The Fuzzy-C Development System was used to
write a version of the phase-1 expert consultant.
Although many of the antecedent parts of the
rules are fuzzy [e.g., Is a 0.0762-m (3-in.) whis-
ker long, medium length, or short?], most of the
consequent parts of the rules are crisp (e.g., If
the desired length is long, use reactor type B).
The need for a fuzzy expert system for the expert
consultant is questionable. Most of the con-
sequents in the expert consultant rules are crisp
because our original thinking about our data led
us to set the problem up in a crisp manner. If we
take the time to rethink some of this information
in a fuzzy manner, we may find that we get
better results. For example, there are many
fuzzy temperature—time profiles between profiles
A, B, C, and D (see Fig. 12). Can we use this to
our advantage? At present, we do not know.
But, if we find that fuzzy answers are better than
crisp answers for this problem we will need to
develop a fuzzy expert consultant.

EXSHELL was not used for the current ver-
sion of the expert control system because it
requires use of precise numbers for control set-
tings, and precise numbers are difficult for EX-

~SHELL to deal with. We wrote comparable ex-
pert control systems with both the CLIPS shell
and the Fuzzy-C Development System. One of
the great advantages of the fuzzy control system
(over the crisp system) is the smoothness of
operation that comes from both the rule antece-
dents and the consequents being fuzzy. Thus,
with more than one rule being fired for each set
of conditions the results are a weighted average
of many possibilities. In the crisp system, only
one rule is typically fired for each set of con-
ditions and, thus, only one crisp answer is ob-
tained. .

The crisp expert system (the CLIPS version)
works with rules that contain crisp antecedents
and crisp consequents, so the rules and their
results can change abruptly as the boundaries of
the crisp sets or membership functions are cros-
sed. Figure 22 shows the temperature—time pro-
files that are calculated by both expert systems
when-our example problem is continued for
more than one time step, as well as the tempera-
ture—time profile we have attempted to model
with our rules. The results shown in Figure 22
are obtained by changing only Time, Tempera-
ture, and Time_Step. Both models could be
improved, although the crisp expert system is the
rougher model. For the crisp expert system, the
temperature—time siope between Time = 120 and
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Figure 22. Comparison of fuzzy and crisp tempera-
ture~time profiles with the desired profile for the
example problem.

Time = 149 is too steep because the initial tem-
perature (1200°C) is near a set boundary. Here,
a choice had to be made between the resuits of
two rules. The choice in Time_Step made the
slope too steep, but if the other rule had been
used the slope would have been too flat. The
fuzzy system averaged the two slopes by firing
more than one rule. For the crisp system, the
slope between the Times 248 and 347 min is too
flat because the Time (248 min) is near a set
boundary. As shown in Figure 22, the same crisp
rule was fired twice in a row, even though the
conditions were almost sufficiently different to
fire a new rule. The solution to this roughness
problem is to divide the crisp sets, or crisp
membership functions, into smaller sets and
write more rules. This solution could also be
used to improve the fuzzy expert system. A
better solution, however, would be to improve
the shapes and boundaries of the existing mem-
bership functions.

CLIPS 1s an easy expert system shell touse. It
stores facts in a stack, an abstract data structure,
or a Fact Stack. The rules whose antecedents
match the facts on the Fact Stack are the rules
that are fired. With this architecture, it is rela-
tively easy to add the facts generated by the
expert consultant to the Fact Stack of the expert
control system. It is also relatively easy to write
the rule base to handle all of the possible combi-
nations of facts that the expert consultant can
provide. Adding the information from the expert
consultant to the Fuzzy-C Development System
version of the control system is more difficult,
however, because of the differences between the
architectures of the two sheils (not because the
fuzzy expert system has to deal with some crisp



logic). The Fuzzy-C Development System is de-
signed to facilitate ease in creating membership
functions and writing rules, but all searches must
be driven by a C program written by the user.
This requirement makes the Fuzzy-C system
more difficult to use than the CLIPS shell, but
still it does allow great flexibility. Crisp ruies and
multiple options are resolved in the C driver
program.

Finally, we believe that a crisp expert system is
a good choice for an expert consultant with a
knowledge base similar to the one developed for
.this study. However, we feel that our fuzzy
expert control system is superior to our crisp one
because the fuzzy system is better able to track
setpoints and the transition from state to state is
much smoother than in the crisp case, as demon-
strated in Figure 22.

ConcrLusions aND Furure WoRrk

We designed and implemented an expert con-
sultant and control system for a material pro-
duction process. This process is a good candidate
- for artificial iatelligence and -expert systems be-
cause it is a difficult process to model mathemati-
cally. The process is run in the laboratory using
rules that are based on years of experience.
Excellent whisker production was achieved using
these rules.

We modeled our expert consultant with three
different expert system shells. The CLIPS shell is
our current choice as the best shell to use for the
consultant, although the explanation facility

capability available in EXSHEILL is desirable. .

We believe it would be worthwhile to reevaluate
our consultant data in fuzzy, rather than crisp,
terms. If a benefit is seen in this approach, we
would use the Fuzzy-C Development System in-
stead of CLIPS for the consultant.

The expert control system was created in crisp
form using CLIPS and in fuzzy form using the
Fuzzy-C Development System. The fuzzy expert
control system is favored because the response it
produces is much smoother than that produced
by the crisp expert system with essentially the
same number of rules. It is cumbersome, how-
ever, to add facts from the expert consultant to
our fuzzy control system. In the future, we will
look at better ways to incorporate this informa-
tion into our fuzzy control system (a new version
of the Fuzzy-C Development System is more
capable in this respect). There are indications

that a future version of CLIPS will use fuzzy
logic. A fuzzy CLIPS shell would be an excellent
tool for developing expert control systems.

Qur fuzzy expert system could be enhanced by
improving our membership functions. Hill et al.
(1989) state that, ‘“Determining the number,
range and shape of membership functions o be
used for a particular variable is somewhat of a
black art.” The reference further states that
trapezoids and triangles, such as those found in
Figures 17 and 18, are good starting points for
membership functions. Ideally, we might expect
to replace the triangles with bell-shaped curves
and the trapezoids with S-shaped curves. Giar-
ratano and Riley (1989), Turksen (1991), Klir
and Folger (1988), and Karr {1991) suggest
methods for determining better membership
functions. Improving these functions will require
taking a harder look at our data. The idea of
using neural nets, fuzzy pattern recognition, or
genetic algorithms (Karr, 1991) to “teach” the
membership functions to improve their shape is
intriguing and will be considered for a future
project.

Finally, we would like to implement our ex-
pert contral system in hardware and rum the
process with less operator participation. This is
certainly possible with today’s technology.
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